磁懸浮技術的研究源于德國,早在1922年Hermann Kemper先生就提出了電磁懸浮原理,并于1934年申請了磁浮列車的專利。進入70年代以后,隨著世界工業化國家經濟實力的不斷加強,為提高交通運輸能力以適應其經濟發展的需要,德國、日本、美國、加拿大、法國、英國等發達國家相繼開始籌劃進行磁懸浮運輸系統的開發。根據當時輪軌極限速度的理論,科研工作者們認為,輪軌方式運輸所能達到的極限速度為每小時350公里左右,要想超越這一速度運行,必須采取不依賴于輪軌的新式運輸系統。這種認識引起許多國家的科研部門的興趣,但后來都中途放棄,目前只有德國和日本仍在繼續進行磁懸浮系統的研究,并均取得了令世人矚目的進展。
德國開發的磁懸浮列車Transrapid于1989年在埃姆斯蘭試驗線上達到每小時436公里的速度。日本開發的磁懸浮列車MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨縣的試驗線上創造出每小時550公里的世界最高紀錄。德國和日本兩國在經過長期反復的論證之后,均認為有可能于下個世紀中葉以前使磁懸浮列車在本國投入運營。
什么是磁懸浮列車
磁懸浮列車實際上是依靠電磁吸力或電動斥力將列車懸浮于空中并進行導向,實現列車與地面軌道間的無機械接觸,再利用線性電機驅動列車運行。雖然磁懸浮列車仍然屬于陸上有軌交通運輸系統,并保留了軌道、道岔和車輛轉向架及懸掛系統等許多傳統機車車輛的特點,但由于列車在牽引運行時與軌道之間無機械接觸,因此從根本上克服了傳統列車輪軌粘著限制、機械噪聲和磨損等問題,所以它也許會成為人們夢寐以求的理想陸上交通工具。
磁懸浮列車的種類
磁懸浮列車分為常導型和超導型兩大類。常導型也稱常導磁吸型,以德國高速常導磁浮列車transrapid為代表,它是利用普通直流電磁鐵電磁吸力的原理將列車懸起,懸浮的氣隙較小,一般為10毫米左右。常導型高速磁懸浮列車的速度可達每小時400~500公里,適合于城市間的長距離快速運輸。而超導型磁懸浮列車也稱超導磁斥型,以日本MAGLEV為代表。它是利用超導磁體產生的強磁場,列車運行時與布置在地面上的線圈相互作用,產生電動斥力將列車懸起,懸浮氣隙較大,一般為100毫米左右,速度可達每小時500公里以上。這兩種磁懸浮列車各有優缺點和不同的經濟技術指標,德國青睞前者,集中精力研制常導高速磁懸浮技術;而日本則看好后者,全力投入高速超導磁懸浮技術之中。
德國的常導磁懸浮列車
常導磁懸浮列車工作時,首先調整車輛下部的懸浮和導向電磁鐵的電磁吸力,與地面軌道兩側的繞組發生磁鐵反作用將列車浮起。在車輛下部的導向電磁鐵與軌道磁鐵的反作用下,使車輪與軌道保持一定的側向距離,實現輪軌在水平方向和垂直方向的無接觸支撐和無接觸導向。車輛與行車軌道之間的懸浮間隙為10毫米,是通過一套高精度電子調整系統得以保證的。此外由于懸浮和導向實際上與列車運行速度無關,所以即使在停車狀態下列車仍然可以進入懸浮狀態。
常導磁懸浮列車的驅動運用同步直線電動機的原理。車輛下部支撐電磁鐵線圈的作用就象是同步直線電動機的勵磁線圈,地面軌道內側的三相移動磁場驅動繞組起到電樞的作用,它就象同步直線電動機的長定子繞組。從電動機的工作原理可以知道,當作為定子的電樞線圈有電時,由于電磁感應而推動電機的轉子轉動。同樣,當沿線布置的變電所向軌道內側的驅動繞組提供三相調頻調幅電力時,由于電磁感應作用承載系統連同列車一起就象電機的"轉子"一樣被推動做直線運動。從而在懸浮狀態下,列車可以完全實現非接觸的牽引和制動。
日本的超導磁懸浮列車
超導磁懸浮列車的最主要特征就是其超導元件在相當低的溫度下所具有的完全導電性和完全抗磁性。超導磁鐵是由超導材料制成的超導線圈構成,它不僅電流阻力為零,而且可以傳導普通導線根本無法比擬的強大電流,這種特性使其能夠制成體積小功率強大的電磁鐵。
超導磁懸浮列車的車輛上裝有車載超導磁體并構成感應動力集成設備,而列車的驅動繞組和懸浮導向繞組均安裝在地面導軌兩側,車輛上的感應動力集成設備由動力集成繞組、感應動力集成超導磁鐵和懸浮導向超導磁鐵三部分組成。當向軌道兩側的驅動繞組提供與車輛速度頻率相一致的三相交流電時,就會產生一個移動的電磁場,因而在列車導軌上產生磁波,這時列車上的車載超導磁體就會受到一個與移動磁場相同步的推力,正是這種推力推動列車前進。其原理就象沖浪運動一樣,沖浪者是站在波浪的頂峰并由波浪推動他快速前進的。與沖浪者所面對的難題相同,超導磁懸浮列車要處理的也是如何才能準確地駕馭在移動電磁波的頂峰運動的問題。為此,在地面導軌上安裝有探測車輛位置的高精度儀器,根據探測儀傳來的信息調整三相交流電的供流方式,精確地控制電磁波形以使列車能良好地運行。
超導磁懸浮列車也是由沿線分布的變電所向地面導軌兩側的驅動繞組提供三相交流電,并與列車下面的動力集成繞組產生電感應而驅動,實現非接觸性牽引和制動。但地面導軌兩側的懸浮導向繞組與外部動力電源無關,當列車接近該繞組時,列車超導磁鐵的強電磁感應作用將自動地在地面繞組中感生電流,因此在其感應電流和超導磁鐵之間產生了電磁力,從而將列車懸起,并經精密傳感器檢測軌道與列車之間的間隙,使其始終保持100毫米的懸浮間隙。同時,與懸浮繞組呈電氣連接的導向繞組也將產生電磁導向力,保證了列車在任何速度下都能穩定地處于軌道中心行駛。
目前存在的技術問題
盡管磁懸浮列車技術有上述的許多優點,但仍然存在一些不足:
(1)由于磁懸浮系統是以電磁力完成懸浮、導向和驅動功能的,斷電后磁懸浮的安全保障措施,尤其是列車停電后的制動問題仍然是要解決的問題。其高速穩定性和可靠性還需很長時間的運行考驗。
(2)常導磁懸浮技術的懸浮高度較低,因此對線路的平整度、路基下沉量及道岔結構方面的要求較超導技術更高。
(3)超導磁懸浮技術由于渦流效應懸浮能耗較常導技術更大,冷卻系統重,強磁場對人體與環境都有影響。
中國磁懸浮列車的研究狀況
目前,中國對磁懸浮鐵路技術的研究還處于初級階段。經過鐵科院、西南交大、國防科大、中科院電工所等單位對常導低速磁懸浮列車的懸浮、導向、推進等關鍵技術的基礎性研究,已對低速常導磁懸浮技術有了一定認識,初步掌握了常導低速磁懸浮穩定懸浮的控制技術。繼1994年西南交大成功地進行了4個座位、自重4噸、懸浮高度為8毫米、時速為30公里的磁懸浮列車試驗之后,由鐵科院主持、長春客車廠、中科院電工所、國防科技大學參加,共同研制的長為6.5米、寬為3米、自重4噸、內設15個座位的6噸單轉向架磁懸浮試驗車在鐵科院環行試驗線的軌距為2米、長36米、設計時速為100公里的室內磁懸浮實驗線路上成功地進行了試驗,并于1998年12月通過了鐵道部科技成果鑒定。6噸單轉向架磁懸浮試驗車的研制成功,為低速常導磁懸浮列車的研究提供了技術基礎,填補了我國在磁懸浮列車技術領域的空白。
德國開發的磁懸浮列車Transrapid于1989年在埃姆斯蘭試驗線上達到每小時436公里的速度。日本開發的磁懸浮列車MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨縣的試驗線上創造出每小時550公里的世界最高紀錄。德國和日本兩國在經過長期反復的論證之后,均認為有可能于下個世紀中葉以前使磁懸浮列車在本國投入運營。
什么是磁懸浮列車
磁懸浮列車實際上是依靠電磁吸力或電動斥力將列車懸浮于空中并進行導向,實現列車與地面軌道間的無機械接觸,再利用線性電機驅動列車運行。雖然磁懸浮列車仍然屬于陸上有軌交通運輸系統,并保留了軌道、道岔和車輛轉向架及懸掛系統等許多傳統機車車輛的特點,但由于列車在牽引運行時與軌道之間無機械接觸,因此從根本上克服了傳統列車輪軌粘著限制、機械噪聲和磨損等問題,所以它也許會成為人們夢寐以求的理想陸上交通工具。
磁懸浮列車的種類
磁懸浮列車分為常導型和超導型兩大類。常導型也稱常導磁吸型,以德國高速常導磁浮列車transrapid為代表,它是利用普通直流電磁鐵電磁吸力的原理將列車懸起,懸浮的氣隙較小,一般為10毫米左右。常導型高速磁懸浮列車的速度可達每小時400~500公里,適合于城市間的長距離快速運輸。而超導型磁懸浮列車也稱超導磁斥型,以日本MAGLEV為代表。它是利用超導磁體產生的強磁場,列車運行時與布置在地面上的線圈相互作用,產生電動斥力將列車懸起,懸浮氣隙較大,一般為100毫米左右,速度可達每小時500公里以上。這兩種磁懸浮列車各有優缺點和不同的經濟技術指標,德國青睞前者,集中精力研制常導高速磁懸浮技術;而日本則看好后者,全力投入高速超導磁懸浮技術之中。
德國的常導磁懸浮列車
常導磁懸浮列車工作時,首先調整車輛下部的懸浮和導向電磁鐵的電磁吸力,與地面軌道兩側的繞組發生磁鐵反作用將列車浮起。在車輛下部的導向電磁鐵與軌道磁鐵的反作用下,使車輪與軌道保持一定的側向距離,實現輪軌在水平方向和垂直方向的無接觸支撐和無接觸導向。車輛與行車軌道之間的懸浮間隙為10毫米,是通過一套高精度電子調整系統得以保證的。此外由于懸浮和導向實際上與列車運行速度無關,所以即使在停車狀態下列車仍然可以進入懸浮狀態。
常導磁懸浮列車的驅動運用同步直線電動機的原理。車輛下部支撐電磁鐵線圈的作用就象是同步直線電動機的勵磁線圈,地面軌道內側的三相移動磁場驅動繞組起到電樞的作用,它就象同步直線電動機的長定子繞組。從電動機的工作原理可以知道,當作為定子的電樞線圈有電時,由于電磁感應而推動電機的轉子轉動。同樣,當沿線布置的變電所向軌道內側的驅動繞組提供三相調頻調幅電力時,由于電磁感應作用承載系統連同列車一起就象電機的"轉子"一樣被推動做直線運動。從而在懸浮狀態下,列車可以完全實現非接觸的牽引和制動。
日本的超導磁懸浮列車
超導磁懸浮列車的最主要特征就是其超導元件在相當低的溫度下所具有的完全導電性和完全抗磁性。超導磁鐵是由超導材料制成的超導線圈構成,它不僅電流阻力為零,而且可以傳導普通導線根本無法比擬的強大電流,這種特性使其能夠制成體積小功率強大的電磁鐵。
超導磁懸浮列車的車輛上裝有車載超導磁體并構成感應動力集成設備,而列車的驅動繞組和懸浮導向繞組均安裝在地面導軌兩側,車輛上的感應動力集成設備由動力集成繞組、感應動力集成超導磁鐵和懸浮導向超導磁鐵三部分組成。當向軌道兩側的驅動繞組提供與車輛速度頻率相一致的三相交流電時,就會產生一個移動的電磁場,因而在列車導軌上產生磁波,這時列車上的車載超導磁體就會受到一個與移動磁場相同步的推力,正是這種推力推動列車前進。其原理就象沖浪運動一樣,沖浪者是站在波浪的頂峰并由波浪推動他快速前進的。與沖浪者所面對的難題相同,超導磁懸浮列車要處理的也是如何才能準確地駕馭在移動電磁波的頂峰運動的問題。為此,在地面導軌上安裝有探測車輛位置的高精度儀器,根據探測儀傳來的信息調整三相交流電的供流方式,精確地控制電磁波形以使列車能良好地運行。
超導磁懸浮列車也是由沿線分布的變電所向地面導軌兩側的驅動繞組提供三相交流電,并與列車下面的動力集成繞組產生電感應而驅動,實現非接觸性牽引和制動。但地面導軌兩側的懸浮導向繞組與外部動力電源無關,當列車接近該繞組時,列車超導磁鐵的強電磁感應作用將自動地在地面繞組中感生電流,因此在其感應電流和超導磁鐵之間產生了電磁力,從而將列車懸起,并經精密傳感器檢測軌道與列車之間的間隙,使其始終保持100毫米的懸浮間隙。同時,與懸浮繞組呈電氣連接的導向繞組也將產生電磁導向力,保證了列車在任何速度下都能穩定地處于軌道中心行駛。
目前存在的技術問題
盡管磁懸浮列車技術有上述的許多優點,但仍然存在一些不足:
(1)由于磁懸浮系統是以電磁力完成懸浮、導向和驅動功能的,斷電后磁懸浮的安全保障措施,尤其是列車停電后的制動問題仍然是要解決的問題。其高速穩定性和可靠性還需很長時間的運行考驗。
(2)常導磁懸浮技術的懸浮高度較低,因此對線路的平整度、路基下沉量及道岔結構方面的要求較超導技術更高。
(3)超導磁懸浮技術由于渦流效應懸浮能耗較常導技術更大,冷卻系統重,強磁場對人體與環境都有影響。
中國磁懸浮列車的研究狀況
目前,中國對磁懸浮鐵路技術的研究還處于初級階段。經過鐵科院、西南交大、國防科大、中科院電工所等單位對常導低速磁懸浮列車的懸浮、導向、推進等關鍵技術的基礎性研究,已對低速常導磁懸浮技術有了一定認識,初步掌握了常導低速磁懸浮穩定懸浮的控制技術。繼1994年西南交大成功地進行了4個座位、自重4噸、懸浮高度為8毫米、時速為30公里的磁懸浮列車試驗之后,由鐵科院主持、長春客車廠、中科院電工所、國防科技大學參加,共同研制的長為6.5米、寬為3米、自重4噸、內設15個座位的6噸單轉向架磁懸浮試驗車在鐵科院環行試驗線的軌距為2米、長36米、設計時速為100公里的室內磁懸浮實驗線路上成功地進行了試驗,并于1998年12月通過了鐵道部科技成果鑒定。6噸單轉向架磁懸浮試驗車的研制成功,為低速常導磁懸浮列車的研究提供了技術基礎,填補了我國在磁懸浮列車技術領域的空白。